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CHAPTER 1

INTRODUCTION

The problem of Fixed Satellite Service (FSS) system synthe-
sis can be described as optimally allotting locations, fre-
quencies and polarizations to communication satellites.
These satellites are deployed in geostationary orbit (5.6
earth radii above the equator) for transmitting signals to
earth receivers. An orbital arc of feasible locations is
determined for each satellite, based on the location and
geometry of its service area. These arcs are comprised of
locations from which every point 1in the intended service
area is visible. A set of test points on the boundary of
each sevice area is defined to facilitate the evaluation of
a synthesis solution on the basis of interference. A fea-
sible frequency band at which signals may be transmitted is
specified, an accompanying polarization scheme is included

as well.

The primary objective in satellite synthesis is to allot
orbital positions, frequencies and polarizations to satel-
lites so that interference from unwanted satellite signals

does not exceed a specified threshold at any (test) point
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in any service area. The interférence—geometry, based on
single-entry interference between two down-link communica-
tion circuits is shown in Fig. 1 {l11]. The following nota-
tion is used: S - satellite, W - wantgd netw&fk, I - inter-
fering network, E - earth‘station, R - receiving antenna.

In this figure, beams transmitted from the two satellites

are aimed at their respective service areas. However, some

signals transmitted from sateliite SI are received at the
service area of satelli;e SW. These signals interfere with
the signals transmitted from satellite SW and thus cause a
‘deterioration in the quality of the signal of satellite SW
received in its service area. Tﬁe synthesis problem is to
specify locations, frequéncies and polarizations for satel-
lites SW and SI 80 that interference between these two sat-
ellites does not exceed a specified threshold anywhere in

the service areas of satellites SW and SI.

In real synthesis problems, there are typically many
more than two satellites and two service areas. Aggregate
carrier-to-interference (C/1) ratios calculated at every

test point of each service area are used to measure the
relative strength of wanted and interfering signals. Any
solution in which all aggregate C/I ratios exceed a certain
threshold is considered acceptable. With this primary

criterion in mind, other objectives for the FSS satellite
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system synthesis problem can be defined. As an example of
this, we may wish to minimize the sum of the absolute devi-
ations of allotted satellite locations from certain predet-

ermined "desired" locations.

The practical importance and political ramifications of

a problem of this nature are obvious when one considers the

proliferation of space technology to even the smallest and

poorest countries. The need for orbital space and frequency
and polarization allotments fof present and future satel-
lites 1illustrates the impott;nce of prudent wuse of the
bgeostationqry orbit and the frequency spectrum, Since com-
plex resource allocation problems are often attacked by
formulating them as mathematical programming (bptimization)
problems, mathematical programming models and optimization
methods described here should provide tools for the complex
orbit/spectrum allocation decisions to be made by those
responsible for the governance of international communica-
tions, such as delegates to the World Administrative Radio

Conference's (WARC) and the International Telecommunication

Union.

In the present work, alternate mathematical programming
formulations for FSS satellite synthesis are considered.
Most of the models are similar but have different objective

functions. Our aims are (1) to study different solution
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techniques for satellite synthesis, and (2) to suggest an
appropriate mathematical programming model, and an accompa-
nying solution strategy, that can be reliably solved for

synthesis solutions in a reasonable amount of time.

The remainder of this manuscript 1is organized as fol-
lows. Chapter II contains a review of literature on the
subject of satellite synthesis. A nonlinear programming
formulation of a satellite synthesis problem and three
applicable solution methods are described in Chapter III.
Nine mixed 1integer programming (MIP) formulations are
described in‘the next chapter and shown in Appendix A.
Results of computer runs with these nine models and five
small-to-medium size geographically compatible scenarios
are also presented and evaluated. In Chapter V, we present
solutions to two of the models studied that were found with
a heuristic solution procedure. Results for this approxi-
mate method are compared with those obtained with branch-
and-bound, an exact method. Solutions to a few large
synthesis problems which have also been found with this
heuristic are presented. Finally, in the 1last chapter,
conclusions and recommendations about strategies for solv-

ing satellite synthesis problems are discussed.



CHAPTER 11

LITERATURE REVIEW

MODELING APPROACHES FOR SATELLITE SYNTHESIS

Satellite synthesis problems have been the subject of much
research. Much of the work pertains to satellites in the
Broadcasting Satellite Service (BSS). Solution strategies
suggested for these problems range from exact algorithms to
heuristic techniques. Some of these approaches can be mod-

ified to suit the FSS also.

There have been approaches that consider only frequency
allotments. Cameron [3] has formulated an integer program-
ming frequency allotment model that minimizes the number of
channels allotted to satellites, subject to co-channel
interference restrictions. Levis et al. [9] have suggest-
ed another 1integer programming formulation for this same
problem. They have also formulated an integer programming
model that considers the allotment of multiple channels to
each service area and takes into account adjacent-channel
interference. Baybars |[1] has formulated an 1integer

programming model that minimizes the number of <channels




7

used while considering both co-channel and adjacent-channel

interference.

Ito et al. [8] have formulated a satellite synthesis
model that <considers the allotment of satellite locations
only. Their objective is to minimize the distance between
the easternmost and westernmost allotted satellite loca-
tions. The model is a nonlinear program that they suggest
be solved wusing the Sequential Unconstrained Minimization
Technique. In solving the model, satellites are positioned
one at a time according to a predetermined launch sequence.
Every satellite that is "launched" is positioned in the
best possible manner relative to the other satellites that
have already been launched. Such a method does not guaran-

tee global optimality.

Levis et al. [10] have formulated a nonlinear program-
ming model for allotting locations and frequencies to BSS
satellites. An alternating polarization scheme is assumed.
Their model attempts to maximize the minimum of the aggre-
gate C/I ratios computed for all test points in every ser-
vice area; locations and frequencies are restricted to lie
within specified bounds. Levis et al. [10] and Martin et
al. [l14] have suggested that this model be solved using an
extended gradient search procedure. Reilly et al. (18]

have recommended a cyclic coordinate search procedure for
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the same problem. An extensive computer experiment to
evaluate the quality of the synthesis solutions fouand by
these two search techniques was conducted by Reilly et al.
[19]. They conclude that the cyclic coordinate search pro-
cedure finds better solutions, but it does 8o at greater
computing expense. This experiment and the.two search

methods are described in more detail in the next chapter.

Heuristic methods for location, frequency and polariza-
tion allotments have been suggested by Nedzela and Sidney

[16], Chouinard and Vachon [4], and Christensen [5].

REQUIRED SATELLITE SEPARATION CONCEPTS

Wang [22] has developed a procedure to calculate the
required orbital separation between two satellites with a
known mean longitude that guarantees single-entry co-
channel C/I ratios at test points along the boundaries of
the 1intended service areas are at least equal to some
acceptable threshold. Aggregate C/I ratio requirements can
be satisfied by specifying a higher threshold for the

single-entry C/I requirements [22].

We define Aqﬁjk to be the required separation between

satellites i and j when their mean longitude is k degrees.

Typically ‘A¢ijk values vary according to a bath-tub curve

over the set of feasible locations [22]. We refer to the




maximum over all feasible k of the A¢ijk as Asij' The
significance of Asij is that it is a worst-case required
separation. Any pair of satellites i and j, when separated

by Asij, would satisfy our single-entry interference cri-

teria irrespective of their locations in the feasible arc.

In all the synthesis examples to be presented, we use
Asij values calculated to ensure that aggrega;e 'C/I
requirements of 25dB are met. The ‘A¢ijk values are calcu-
lated based on a single entry co-channel C/1 ratio require-
ment of 30dB. The notion of requiring an extra 54dB over the
single-entry interference criterion to meet an aggregate
interference criterion was used at WARC '77 [6] and has
proven to be valid for scenarios considered by Levis et al.

(11]. The Ag values and the As;. values used in the

J
experiments described in the forthcoming chapters have been

ijk
calculated using Wang's [22] method.

Detailed descriptions of the separation concept for sat-
ellites with elliptical-beam antennas can be found in Wang
[22]), Levis et al. [11], and Reilly et al. {[18]. Yamamura
and Levis [21] have done similar work for satellites with
circular-beam antennas, which is also described in Levis et

al. [11].

Some of the models described in the literature have used

similar separation concepts. A model developed by Ito et



10

al. [8] uses a sgparation matrix to ensure that single-
entry interference requirements will be met. Required sat-
ellite spacing calculations are based on the current loca-
tions of the satellites already positioned ("launched").
Christensen [5)] <calculates separation values under the
assumption that the required separation is approximately

constant and independent of the satellite orbital longi-

tudes.

SYNTHESIS MODELS USING WANG'S SEPARATION CONCEPT

The satellite separation concept has opened new avenues for
the solution of satellite synthesis problems, as will be
discussed in Chapters IV and V. The repeéted, complex
interference calculations seen in nonlinear programming
models for satellite synthesis can be avoided. Such models
have been used by Levis et al. [10], Martin et. al. {14},
Reilly et. al. [19] and Ito et al [8]. Models that utilize
the separation concept are a potentially valuable alterna-

tive to the nonlinear programming synthesis models suggest-

ed to date.

Reilly et. al. [20] have incorporated the satellite sep-
aration concept in a mixed integer programming (MIP) model
and an almost linear programming model for allotting

satellite locations. The logical relationships between
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satellite locations that are required to enforce the
satellite separation <constraints prohibit formulating the
model as a pure linear program. Instead the simplex method
with restricted basis entry, which does not ensure optimal-
ity, 1is used to find solutions to the almost linear pro-
gramming model [20]. The MIP model can be solved to opti-
mality with a branch-and-bound algorithm, but solution
times for large problems may be prohibitive. The objective
in both of these models is to minimize the sum of the devi-
ations between prescribed (optimal) 1locations and the cor-
responding "desired" satellite locations. Additional MIP
formulations that use the satellite separation concept are

described in Chapter 1IV.

Gonsalvez [7] has developed a switching heuristic, or
permutation algorithm, that is applicable to satellite
synthesis problems as well as to some scheduling problems.
He uses an MIP synthesis model suggested by Mount-Campbell
et al. [15] which incorporates the minimum required satel-
lite separation concept. An initial ordering of the satel-
lites is selected. With this initial ordering the synthe-
sis problem reduces to a linear program. The linear program
is then solved to find optimal satellite locations for the
given ordering. The algorithm proceeds by considering per-
mutations of small groups of adjacent satellites and re-

optimizing the 1linear programming solution as needed.
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Finite termination is guaranteed, but optimality 1is not.
Feasible solutions to large synthesis problems (up to 81
satellites) have been obtained with this heuristic in very
reasonable solution times.> Results obtained with this heu-
ristic for some large problems are described in Chapter V.
We also compare results for the switching heuristic with

results for branch-and-bound.




CHAPTER III
AN EVALUATION OF THREE SEARCH METHODS FOR A
NONLINEAR PROGRAMMING FORMULATION FOR SATELLITE

SYNTHESIS

NONLINEAR PROGRAMMING FORMULATION

As mentioned in the pre#ious chapter, a nonlinear program-
ming formulation of satellite synthesis problems has been
suggested by Levis et al. [10]. The model as presented in

Reilly et 41. [19] is:

Minimize f(x) = ¥ X b3 exp(a - (C/I)i'k) (3.1)
i j€J. k€K, J
i i

subject to,

S U S VR S 1 v i (3.2)

£ o FEE S Vi (3.3)
where x, is the location of satellite i, xg is the first

i i

(lowest) frequency in the family of channels assigned to

satellite i, e, (wi) is the easternmost (westernmost) fea-

sible location for satellite i, 1i (hi) is the lowest

(highest) frequency that can be assigned to satellite i, a
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is a scaling constant, Ji is the set of test points in the

service area served by satellite i, and Ki is the set of

frequencies'ét which signals are to be transmitted from

satellite i [19].

The objective function (3.1) is intended to maximize the

worst aggregate C/1 ratio at any test point. By raising e
to the (-C/I)ijk. power and summing over i,j, and k, the
worst C/I ratios contribute the most to the objective‘func-
tion value. The constraints,(3.i) and (3.3) are simple
bound constraints and ensure that the location and frequen-

cy decision variables remain feasible.

This synthesis formulation is a difficult optimization
problem to solve. The objective function in this model is
not convex. In fact, it is characterized by numerous peaks
and valleys of varying heights and depths [19]. The compu-
tation of the C/I ratios is much more <complicated than it
might appear from the formulation. The C/I ratios are actu-~
ally a function of topocentric and satellite-centered
angles, frequency discrimination, antenna gains and dis-
crimination patterns, elliptical beam parameters, and

transmitted power [19]. For brevity the entire expression

for C/I has not been presented. In this model C/I is treat-

ed as a function of locations and frequencies only.
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COMPUTER EXPERIMENTS WITH THE GRADIENT AND CYCLIC

COORDINATE SEARCH PROCEDURES

Reilly et al. [19] have used the gradient search technique
and the <c¢yclic coordinate search technique to solve the

model given in the previous section.

The gradient search technique is a method that can be
used to solve unconstrained nonlinear optimization prob-
lems. It can be modified to solve problems with c¢on-
straints such as the ones ﬁresent in the model we consider
here. The method works as follows. We compute the gradient
of the objective function at a feasible point. A line
search is conducted 1in the negative gradient direction to
find an improved solution. The method proceeds iteratively
by restarting at the improved solution and computing the
gradient again. The method terminates if a 1line search
does not yield an improved solution, 1if a global optima
(for convex programming problems) or a local optima (for
non-convex programming problems) is found, or if the proce-
dure goes through a predetermined number of iterations.
Only solutions which are feasible are examined during the

line search.

The cyclic <coordinate search procedure begins with the
selection of a feasible point. Line searches are conduct-

ed, in turm, in both the positive and negative coordinate
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directions for each of the decision variables. The method
terminates when a line search 1in the coordinate directions
for each of the decision variables yields no improvement in
the objective function value. The disadvantage of this
method is that the objective function 1is evaluated many

times. However, complex gradient computations are never

done.

Reilly et al. [19] designed an extensive computer exper-
iment to assess the performance of the gradieant and cyclic
coordinate search algorithms as synthesis tools. A synthe-
sis problem that consisted of seven South American coun-
tries (Argentina, Bolivia, Brazil Chile, ©Paraguay, Peru
and Uruguay) was used. Each country is to be served by one
satellite. Each of the satellites is assumed to be capable
of transmitting signals over a family of three channels
with alternating polarization. Decision variables need
only be defined for the lowest frequency assigned to each
satellite. The remaining two frequencies are then the next
two higher frequencies. All seven satellites are assumed

to have the same feasible arc and feasible spectrum.

Since the performance of the gradient and cyclic coordi-
nate search techniques can be affected by various factors,
a list of factors that could possibly affect performance

was compiled. The factors and factor levels used are
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listed in Table 1. A l/4-fractional factorial design,
which included 64 runs, was chosen by Reilly et al. [19].

The important conclusions from the experiment are:

(1) Thirty-two of the 34 best results were obtained by
using the cyclic coordinate procedure. The average
worst C/I for the gradient runs was 19.73dB, and for
the cyclic coordinate runs the average was 41.lde.
Only three of the gradient search runs resulted in a
worst C/I value greater than the acceptability thresh-
old of 30dB. On the other hand, all cyclic coordinate

runs satisfied this criterion of acceptability.

(2) A cyclic coordinate iteration requires about 5.6 times
as much CPU time as a gradient search 1iteration
requires. (This conclusion is valid for the methods as

they were implemented by Reilly et. al. [19]).

(3) Better results are found when a longer feasible arc

segment (80° - 110° W) is used.

(4) When the starting locations are centered in the feasi-
ble arc, the initial locations have little effect on
the average of the observed worst C/I ratios. However,
when the satellites are located near the western bound-
ary of the feasible arc, a better solution is found
when the satellites are collocated than when they are

separated by 1°. This is especially true for the
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Table 1
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FACTORS AND FACTOR LEVELS

Factor Levels

Low (-1)

High (+1)

Algorithm

Location
Spacing

Frequency
Spacing

Starting

Locations

Starting
Frequency

Arc Length
Frequency

Spectrum

Run Time

Gradient Search

0°
0 Mhz

Centered in
Feasible Arc

Centered in Ava-
ilable Spectrum

90° - 110° w
12233-12300 Mhz

S CPU minutes or
10 iterations or
cycles

Cyclic Coordinate
Search

(or)
Zoutendijk's Method.

10

5 Mhz

Spaced From Western-
most Feasible Loc.

Spaced From Highest
Available Spectrum

80° - 110° w

12200 - 12300 Mhz

10 CPU minutes or
30 iterations or
cycles

Note.

+1 for factor A
search procedure.
represents Zoutendijk's method.

For the work carried out previously [19] a level of
represented the cyclic coordinate
For the present work a level of +]
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gradient runs.

(5) The poor performance of the gradient search algorithm
can be attributed to a "jamming" effect that is often

observed close to a boundary of the feasible region.

This can be explained as follows. Some components of *

the gradient may indicate that moves near a boundary
look promising. The result will be that the line éeg—
ment searched in the negative gradient directioﬁ may be
quite short, thereby prohibiting substantial reposi-
tioning of the satellites. In effect, the algorithm

becomes " jammed'" against a boundary.

COMPUTER EXPERIMENTS WITH ZOUTENDIJK'S METHOD

The discussion above indicates that although better solu-
tions are available, the "“"jamming" effect close to a bound-
ary can result in poor performance of the gradient search
algorithm. If we could avoid being_trapped along a bound-
ary, we could possibly find better solutions than those
found with the gradient search with much shorter solution
times than those obtained by the more computationally
demanding cyclic coordinate search procedure. An altefnate
method to the gradient and cyclic ;OOtdinate searches, in

terms of "jamming" and solution time, respectively, 1is

Zoutendijk's method.
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Zoutendijk's method, or the method of feasible direc-
tions, 1is an algorithm which can prevent "jamming" [24].

The method involves solving a linear program to determine
the most favorable direction in which to conduct a line
search., The directions generated are a compromise between
lining up with the negative gradient, as tﬁe gradient
search does, and avoiding the boundary of the feasible
region. For convex programming problems, this method will
converge to a global optimum. However, as mentioned earlier
in this chapter, the objectivé function in our problem is
not convex and we would most likely find a local, rather
than a global, optimum. At every iteration of Zoutendijk's
algorithm a linear program has to be solved. Due to the
special nature of our problem, this linear program is very
sparse (Table 2) and reasonable solution times to the lin-

ear program are usually observed.

Given a feasible starting solution X, to the nonlinear

optimization pfoblem,
Minimize z = f(x) (3.4)
subject to,

g(x) <0 (3.5)

the direction-finding linear program to be solved is,
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Table 2

CONSTRAINT COEFFICIENT MATRIX OF SUBPROBLEM IN ZOUTENDIJK'S
METHOD

-v f+v f-v f+v fooo..o'........o -.v f"'v f +l
X X X X X X

11 1l 12 12 f7 f7

-1 +1 0 0 0 0 0 ccceeees O 0 +1
+1 -1 0 0 0 0 0 .cecveees O 0 +1
0 0 -1 +1 0 0 0 ceeececs O 0 +1

0 0 +1 -1 0 0 0 ceeseens O 0 +1

0 0 0 0 -1 +1 0 ceeeeees O 0 +1

0 0 0 0 +1 -1 0 «cveeeees O 0 +1

+1

0 0 0 0 0 0 -1 +1 ... 0 0 +1

0 0 0 0 0 .coees =1 +1 0 0 +1

0 0 0 0 0 ceceee +1 -1 0 0 +1

0 0 0 0 0 oo 0 0 -1 +1 +1

0 0 0 0 0 cens 0 0 +1 -1 +1

+1 +1 +1 +1 £ U +1 +1 +1 +1 0
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o
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Minimize P ' ' (3.6)
subject to,

Vf(xo)y -p < 0 (3.7)
g(x ) + wvg(x )y -pu < 0 (3.8)
Tl <1 (3.9)

1

where Pp is a scalar, Vf(xo) is the gradient of the objec-

tive function at X Vg(xo) is the gradient of the constr-

aints at X g(xo) is the value of the constraint functions

(3.5) at X u=(1,1,1....,1), and yt(yl,yz,.....,yn) is the

direction vector. We replace |yi+ with (yi+ + yi-), where
+ -

Y5 and y; are restricted to non-negative values, to make

constraint (3.9) linear before the linear program is solved

The algorithm for Zoutendijk's method is initiated at a

feasible point. The linear program, given by equatioas
(3.6) - (3.9), is solved to give us an optimal direction y
in which to conduct a line search. Every time an improved

solution is found, we start from the iﬁproved solution and
solve another linear program. We have implemented the
algorithm so that it terminatesAeither when the solution to
the linear program is zero, when 13 searches of 10 points
each in the y direction yield no improved solution, or when
m* iterations are completed. The maximum number of itera-

. * .
tions, m , was set at ten for the experiments we present

here.
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Formally the entire algorithm can be stated as follows:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Choose a feasible starting solution xo = (x, ,x

l f )o

o o)
Let m = 0.

* .
Ifm 2 m., go to Step 6. Otherwise, compute

Solve the direction-finding linear program. If the
solution to this linear program is zero, go to

Step 6. Otherwvise, let n = 0 and m = m+l.

Let n = n + 1. Determine the length d of the line

segment from (x1 yXg ) to the nearest boundary
)

o
in the y direction. Evaluate the objective function

(3.1) at ten equally spaced feasible points in the

y direction,

(xl’xf) = (x1 »X g ) + kd .y |, k= 1,2.....10.
0 (o] -
(0.2)"

Select the most favorable of these ten points,

* *

(x) axg
* *

1f f(x1 yxg ) < f(x1 X g ), set (x1

o o 0

and go to Step 2. Otherwise go to Step 5.

).

* *
,xfo)=(xl ,xf )

If n > 12, go to Step 6. Otherwise go to Step 4.

Stop.



24

The computer code wused for the gradient runs in the
experiments conducted by Reilly et al. [19] has been
modified. FSS antenna patterns have been used instead of
the BSS patterns used in [19]). All channels are assumed to
have the same polarization. To solve the direction-finding
linear program at each iteration, a linear programming
package called ZX3LP, available through the IMSL Library,
was linked to this computer code. For an n-satellite prob-
lem, the linear program to be solved has 2n+l variablés and
4n+2 constraints - 4n constraints resulting from equation
(3.8) above and one each for equations (3.7) and (3.9). The
first constraint, resulting from (3.7) has coefficients
equal to the gradient of the objective function with
respect to each of the decision variables. The values of
these gradient components range from 10-4 to 10-9. The
rest of the constraint coefficients are 0 or 1. As one can
see from Table 2, the constraint coefficient matrix of the
linear program to be solved is very sparse. Due to the ill-
conditioned constraint coefficient matrix, the gradient

component values are scaled to avoid accuracy errors.

A total of fourteen runs, seven each with the gradient
search algorithm and Zoutendijk’s algorithm, have been
made. The same factors and factor levels used in [19] have
been used here also. They are shown in Table 1. For the

present work, a level of +1 for factor A (algorithm)




25

indicates Zoutendijk’s method, and a level of -] indicates
the gradient search method. Factor H (run time/iteration
count) was set at the low level of -] for all the ruas. The
results of this experiment are summarized in Table 3. A
stop code of 1,2, or 3 indicates that the maximum iteration
count was reached, that the allotted CPU time had expired,
or that all attempts to find a better solution than the
final reported solution failed. Finally, a stop code of 4
indicates that the current solution is at a Kuhn-Tucker
point, a local optima. (Note, however, that this did not

occur) .

All the runs summarized in Table 3 were made on an IBM

3081-D at The Ohio State University.

CONCLUSIONS ON SEARCH METHODS FOR_NONLINEAR PROGRAMMING

FORMULATION

It is seen from Table 3 that in each pair of rums, either
Zoutendijk’s method performed better "than the gradient
search or it yielded an acceptable solution, where accepta-
ble means any solution with a worst C/I value of at least
30dB. Only two of the gradient runs and three of the Zout-
endijk runs meet our criterion of acceptability. In addi-
tion to these, two other Zoutendijk rums (1b and 5b) came

very <close to the 30dB acceptability threshold. Both of
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Table 3

SUMMARY OF COMPUTER RESULTS

Worst Iter./ CPU Stop
c/1 Cycles Time Type

Run A B C D E F G H (sec)

la -1 +1  +] +1 -1 +1 -1 -1 5.59 6 264 3
1b +1 +1 +1 +1 -1 +1 -1 -1 29.03 10 77 1
2a -1 +]1  +1 -1 +1 +1 -1 -1 28.38 .5 62 3
2b  +1 +1 +1 -1 +1 +1 -1 -1 36.05 10 64 1
3a -1 +1 +1 +1 +1 -1 +1 -1 5.59 3 122 3
3b  +1 +1 +1 +1 +1 -1 +1 -1 24 .39 .1 85 3
4fa -1 +1 -1 -1 +1 -1 -1 ~-1 8.62 2 76 3
4  +1 +1 -1 -1 +1 -1 -1 -1 17.21 3 88 3
5Sa -1 +1 -1 +1 +1 +1 +1 -1 543 8 300 2
5b +1 +1 -1 +1 +1 +1 +1 -1 29.41 10 61 1
6a -1 -1 +1 -1 -1 +1 +1 -1 41.21 5 34 3
6b +1 -1 +1 -1 -1 +1 +1 -1 32.62 .10 54 1
7a -1 -1 +1 +1 -1 -1 +1 -1 47.97 10 32 1

7b +1 -1 +1 +1 -1 -1 +1 -1 35.81 10 47 1
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these runs terminated because the maximum 1teratiom count
was exceeded. It is possible that another iteration would
have increased the worst C/I value to an acceptable level.
It is also observed that whenever the gradient search per-
formed poorly, Zoutendijk’s method found much improved
solutions. On the other hand, for gradient runs which pro-
duced acceptéble solutions, Zoutendijk’s method produced
less attractive, but acceptable, solutions. The average
C/1 value for the gradient runs is 20.39dB while for the

Zoutendijk rums it is 29.22dB.

Runs made with Zoutendijk’'s algorithm always resulted in
more iterations, Five of the seven Zoutendijk runs termi-
nated because the maximum iteration count was exceeded.

This implies that more improvement may have been possible

in these runs. Only one of the gradient runs terminated
due to the iteration count. No Zoutendijk run terminated
at a Kuhn-Tucker point, again implying that more improve-

ment was possible.

Another significant observation that is made from the
results presented here concerns solution times. The average
run time per iteration for the gradient runs is 26.08 sec-
onds while the corresponding value for the Zoutendijk runs
is 10.25 seconds. The total average time for the gradient

runs is 127 seconds, while for the Zoutendijk runs it is 68
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seconds. Thus, on the whole, Zoutendijk’s method appears to
work faster, It can be seen from Run 5 that while the
gradient search run had two iterations less than Zouten-
dijk’s algorithm, it took nearly five times a; much time.
Such a result can be explained by the fact that the gradi-
ent search can become jammed against a boundary and perform
fruitless line searches over very short line segments,
thereby evaluating the objective function many times for

naught.

It is also observed that if the satellites are separated
by 1° and are located at the western boundary, then the
gradient search performs poorly. This is presumably because

the easternmost satellites cause a blocking effect on the

other satellites. For the same scenario, Zoutendijk’s
method, because of the nature of the algorithm, does very
well. Another observation, that is not evident from the

results presented here, is that satellite locations have a
much greater effect than frequencies 'in determining the

magnitude of the worst C/I values [2].

To summarize the findings from the experiments presented
here it can be concluded that Zoutendijk’s method looks
very promising. It has performed better than the gradient
search, both in terms of the worst C/I values and in terms

of solution times. However, neither method guarantees an




29
acceptable solution. To do full justice to the comparison
of the gradient search and Zoutendijk algorithms, an
extensive experiment, with several test problems, would
have to be conducted. Alternate solution techniques, some

of which are described in the next two chapters, are avail-
able. These methods, wunlike the nonlinear programming
solution techniques, guarantee that any solution found is

acceptable.



CHAPTER 1V
MIXED INTEGER PROGRAMMING FORMULATIONS FOR

SATELLITE SYNTHESIS PROBLEMS

INTRODUCTION

In this chapter we consider mixed integer programming (MIP)
formulations oflsatellite synthesis problems. It is evi-
dent from the discussion of the previous chapters that the
major criterion to be satisfied in the satellite synthesis
problem is that C/I ratios must not fall below a certain
threshold value. The minimum satellite separation concept
[22] is a valuable tool in ensuring that we do not exceed
predetermined acceptable interference limits, and has been
used in the formulations discussed below. This minimum
satellite separation concept can be wused in many synthesis

models with a variety of objective functions.

In the present work nine MIP models with different
objective functions have been considered. The results of

computer experiments with these models and five geographi-

cally compatible scenarios is presented. Both point and
arc allotments have been considered. The purpose of this
- 30 -
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work is to evaluate the results from our different models
in terms of robustness of objective function and solution
quality. We try to identify objectives which are "univer-
sal" in the sense that while meeting a particular criterion
they do well against other objectives also. We look at the
number of feasible solutions found with each model during a
certain period of execution. Percentage improvements in
objective function values are also considered. The 'initial
ordering, the final ordering, and the change in the order-
ing of satellites from the first feasible solution to the

final solution are studied.

OBJECTIVES FOR THE MIP FORMULATIONS

The nine different formulations (objectives) that have been

considered are:

l. Maximizing the minimum of the extra separation beyond
A Y for any pair of satellites i and j. This objective
would tend to maximize the minimum C/I ratio and is thus
similar to the objective used for the nonlinear program-

ming formulation discussed in the previous chapter,

2. Maximizing the minimum gap between adjacent satellites.
The use of this objective would leave large gaps between
satellites, facilitating introduction of new satellites

between existing satellites at a future time.
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Minimizing the total deviation of allotted locations
from given "desired'" locations, subject to feasible arc
restrictions. The use of this objective can enable
administrations to place satellites close to some pre-
determined desired locations. In the experiments pre-
sented here, the desired location used forIeach satel-

lite is the center of its visible arc.

Minimizing the maximum deviation of an allotted location
from its given "desired" location, subject to feasible
arc restrictions. This model attempts to do the same as
model 3 except that we look at the maximum deviation
rather than the total deviation of allotted locations

from desired locations.

Minimizing the total weighted deviation of allotted
locations from given "desired" locations. This model
fulfills the same objective as models 3 and 4 above. The
weight used_for each satellite is inversely proportionél
to the length of the satellite’s feasible arc. This
weighting scheme, by giving greater weight to adminis-
trations with smaller feasible arcs, would attempt to

ensure a feasible solution.

Minimizing the maximum deviation of an allotted location
from the closest boundary of the associated satellite’s

feasible arc. The solution to a synthesis problem with
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this objective would leave a large gap in the center of
the available arc enabling easy insertion of future sat-

ellites.

Minimizing the length of the arc between the easternmost
and westernmost allotted locations. This objective
attempts to place satellites as close together as possi-

ble and thereby tends to conserve the geostationary

orbit.

Maximizing the minimum length arc segment allotted to
any satellite. This objective differs from objectives ]
through 7 in that it allots an arc segment to each sat-
ellite rather than a point, This formulation gives an
administration the flexibilty to place their satellite
anywhere in the allotted arc segment. Arcs are permit-
ted to overlap if the minimum required satellite separa-
tion is zero. This model allots each administration the

same length arc segment.

Maximizing the minimum 1length weighted arc segment
allotted to any satellite. This objective might be more
practical than that in model 8 above because we could
allot arcs to administrations (countries) such that the
length of each allotted arc segment is proportional to
some criterion and also give administrations the

flexibility to place satellites anywhere 1in their



34
allotted arc segments. The weighting criterion to be
used could be a country’s population, telephone traffic,
land area, population density, etc. The weights we use

here are proportional to the population of each country.

For the sake of brevity, only the formulation for objective'
1 is given below. Formulations (2) through (9) and the
notation used in them is given in Appendix A. The notation

that we use for formulation (model) 1 is given below:

Parameters:

E.(W.) = easternmost (westernmost) feasible location for
] satellite j, in degrees west longitude.

E = minimum [Ej] over all j (assumed to be zero).
W = maximum [Wj] over all j.
As,, = worst-case minimum required satellite separation

1] between satellites i and j, in degrees longitude.:

Decision variables:

xj = orbital location of satellite j (degrees west of E),
in degrees west longitude.

1 if satellite i is located west of satellite j,

1] 0 otherwise

a = minimimum of the extra separation beyond As.. for all
pairs of satellites i and j. 1]
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Model ]:Maximize the minimum of the extra separation beyond

a required minimum satellite separation.
Maximize z = a (4.1)

sub ject to,

( xi—xj) + [2(E-W)- Asij]xij - a

v

2(E-W) (4.2) ¥i,jdij

lx:.. - a > As,. (4.3) ¥i,j i<j

(-xg+x:) - [2(E-W)- As;olx;, > i

E, & x5 < Wy (4.4) ¥j

X;5 = 0or 1l (4.5) ¥i,j di<j
X; 20 (4.6) ¥j

a >0 (4.7)

The objective function (4.1) maximizes the minimum of the
extra separation between two satellites ©beyond their
required minimum separation. For each pair of satellites i
and j, exactly one of the constraints (4.2) and (4.3) .will
be redundant. The binary variable xij which takes value 1
or 0, depending on whether satellite i is 1located to the
west of satellite j, determines the redundant constraint.

If xij=1 then constraint (4.3) is redundant. 1If xij=0 then
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constraint (4.2) is reduhdant. The non-redundant con-
straint then enforces the required separation between sat-
ellites i and ). Constraints (4.2) and (4.3) also measure
the minimum separation beyond a required satellite separa-
tion, which is denoted by a. Constraints (4.2) and (4.3)
are an example of dichotomous constraints commonly used in
mixed integer programming formulations to enforce "either-

or" conditions.

Constraints of type (4.4) ensure that all allotted sat-
ellite locations are feasible. In the MIP code wused to
solve this synthesis problem, constraint (4.4) is enforced
as a simple bound on the variable xj. The integrality of
the binary variables 1is enforced by (4.5) and non-
negativity requirements of continuous variables is ensured

by (4.6) and (4.7).

For a problem with m satellites, this formulation
entails m(m-1) structural constraints (4.2) and (4.3), m+}

continuous variables and m(m-1)/2 binary variables.

The formulations given in Appendix A are very similar to

the one shown above. Each of these formulations uses the
minimum required satellite separation, Asij' However, in
several of the formulations, additional wvariables are

introduced.




37

COMPUTER EXPERIMENTS WITH MIP MODELS

Five scenarios were used to evaluate the nine MIP models.
These scenarios are listed below. The countries and satel-

lites which make up each scenario are given in Table 4.
(1) E. Europe (12 satellites/12 service areas).
(2) W. Europe (12 satellites/12 service areas).
(3) S. America (13 satellites/]2 service areas).
(4) N. Africa (10 satellites/l1Q service areas).

(5) S.E. Asia (10 satellites/l10 service areas).

The results of computer experiments with these five sce-
narios and our nine models are given in Appendix B. An IBM
linear programming/mixed integer programming package called
MIP/370 has been used for all the runs. The runs for these
experiments were made on an IBM 4341 at The Ohio State Uni-
versity. The maximum CPU time specified was 20 minutes and
maximum node storage was set at 5000 nodes. Computer runs
were automatically terminated if either of these limits was

exceeded.

To evaluate the universality, or robustness, of each of

the models, the final solution from formulations ] through



Table 4

GEOGRAPHIC SCENARIOS USED IN EXPERIMENTS

38

EAST WEST SOUTH NORTH S.E.
EUROPE EUROPE AMERICA AFRICA ASIA
l. Finland Italy Bolivia Libya Taiwan
2. Bulgaria Norway Brazil” Nigeria Cambodia
3. Romania Denmark Chile Mali Malaysia
4. Greece Belgium Colombia Morocco Vietnam
5. Albania France Guyana Sudan China
6. Poland Switzerland Peru Egypt Burma
7. Hungary Netherland Paraguay Chad Thailand
8. Sweden Spain Equador Tunisia Laos
9. Austria Ireland Venezuala Algeria Indonesia
10. E. Germany W. Germany Argentina Mauritius P?ilibp—
: ines
11. Yugoslavia Portugal Uruguay
12. Czechoz- United Surinam/
lavakia Kingdom F. Guyana
* - 2 Satellites.
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7 was wevaluated in the objective function of each of the
other six models for each scenario. The results of this
analysis can be found in Appendix C. The initial ordering,

the final ordering, and the change in the ordering of sat-

ellites from the first feasible solution to the final solu-

tion was also investigated. Our findings are given in

Appendix D.

Table 5 gives the average number of feasible soiutions
found with each of the models for the five scenarios. The
average percentage improvement and the average percentage
improvement with respect to time for each of the models is

also given in Table 5.

From the results given in Appendices B,C and D, and in
Table 5, we make the observations discussed in the next

section.

OBSERVATIONS OF COMPUTER RUNS ON THE MIP MODELS

As mentioned earlier in this chapter, we have considered
both point allotment models (models ] through 7) and arc
allotment models (models 8 and 9). We will analyze the
results of computer runs of the point allotment models sep-

arately from the results for the arc allotment models.
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Point Allotment Models

On an examination of the results given in the appendices
and from the discussion below it will become <clear that
models 3,4, and 5 are robust. Furthermore, solution times
for these models are less than those for the .other point
allotment models. Hence, in addition to overall results,

we will also give results pertaining to these three models.

The tables in Appendix B give us the times to the first
feasible solution and the final feasible solution for each
of the branch-and-bound runs. We see that for all our mod-
els and for each of the scenarios considered, the first
feasible solution was found very fast. For all the point
allotment models, the average time to the first feasible
solution was 11.9 seconds. On the other hand, the time to
the first feasible solution for models 3,4, and 5 was only

5.5 seconds.

As mentioned earlier, the maximum CPU.time specified for
all the runs was 1200 seconds. However, we find little or
no improvement in the objective .function values during the
last few minutes of execution, even though optimal solu-
tions were found for but a few of the runs. The average
time to the best solution for all point allotment models
was 385 seconds. On computing the same quantity for models

3,4, and 5 we get a value of 165 seconds. An optimal
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solution was found and proved for models 3,4, and 5 in
three of the five scenarios. A proven optimal solution was
found for model 6 in one scenario. All other point allot-

ment runs terminated at the maximum allotted CPU time.

Table 5 gives us the average number of feasible solu-
tions found for each of our models. It is seen that model
2 found an unusually large number of feasible solutioﬁs.
This can be explained as follows. Recall that model 2 max-
imizes the minimum gap betyeen adjacent satellites. Once
the entire arc is occupied, the gap between each pair of
ad jacent satellites is the same. [In each of our runs, this
gap was larger than the largest required satellite separa-
tion value. Hence, alternate solutions to the model are
found by switching satellites from one position to another.
The relative locations and hence the objective function
values remain the same for such solutions. Each time a
satellite is switched we find a different feasible solu-
tion. Since such switches occur many times we find many

different feasible solutions.

We also see from Table 5 that models 3,4, and 5 find a
relatively small number of feasible solutions. Thié is
because some of the runs terminated when an optimal solu-
tion was found, before the maximum CPU time expired. The
numbers of feasible solutions found in 20 minutes of CPU

time for models 1, 6 and 7, are nearly the same.
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Table 5
AVERAGE NUMBER OF FEASIBLE SOLUTIONS AND PERCENTAGE
IMPROVEMENTS IN OBJECTIVE FUNCTION VALUE
AVG. NO. OF % IMPROVEMENT %4 IMPROVEMENT
FEASIBLE PER CPU MINUTE
SOLUTIONS
Model 1} 13.0 64.16 13.69
Model 2 68.0 31.48 15.84
Model 3 6.4 20.20 18.70
Model 4 3.6 11.35 29.69
Model 6 10.4 82.38 35.16
Model 7 11.8 21.32 1.93
Model 8 10.0 38.64 ' 10.88
Model 9 8.0 22.80 9.41

NOTE. All the above runs were given a maximum CPU time of
20 minutes. Some of the rums reached optimality
before the maximum time expired.
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Table 5 also gives the percentage improvement in solu-
tion value from the first feasible solution to the best
solution, and the percentage improvement with respect to
the time to find the best solution. A significant point
emerging from this analysis concerns models 3 and 5.
Recall that model 3 minimizes the total deviation from
desired locations. In model 5 also we minimize the sum of
deviations but with a weighted objective function and with-
out enforcing the visible arc restrictions. From‘Table 5
we see that model 5 converges to its final solution faster
than model 3. . Appendix C, in which we compare the solution
for each model against the objective function values of the
other models, shows us that the solution for both of these
models is similar. We thus <conclude that it might be
advantageous to use model 5 1instead of model 3. However,
we must note that the solution from model 5 might not be

feasible, in which case we would have to use model 3.

We see from Table 5 that models 1 and 6 show a signifi-
cant improvement in objective function value from the first
feasible solution to the best solution found. Model 4 shows
the least percentage improvement from the first feasible
solution to the best solution. We also note from Table 5
that model 5 has the fastest convergence to the final solu-
tion, while model 7 <converges very slowly to its final

solution.
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The solutions from models ] through 7 were evaluated in
the other six models by calculating their "would-be" objec-
tive function values. These solution values are reported

in Appendix C. The following observations have been made:

(1) The best solution to model 1 gave an objective function
value close  to that of the best solution to model 2,

and vice versa.

(2) Also, the best solution to model 3 gave an objective
function value <close to that of the best solution to

model 5, and vice versa.

(3) The solutions to models 3,4, and 5 gave good values for
the objective function of model 7, but the reverse was
not true. Recall that in our case the desired locations
are assumed to be the center of the feasible arcs. By
minimizing deviations of prescribed satellite locations
from desired 1locations, we also conserve the geosta-

tionary orbit, but not vice versa.

Arc Allotment Models

In models 8 and 9 we allot arc segments to satellites. In
model 8 the length of the arc segment allotted to every
satellite (administration) is the same. In model 9 the the
length of the arc segment allotted to every administration

is proportional to the population of the administration.
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From Appendix B we see that the overali average time to the
first feasible solution for model 8 is 11.0 seconds while
for model 9 it is 7.5 seconds. The overall average time to
the best solution found is 557 seconds for model 8 and 333

seconds for model 9.

A proven optimal solution was found for model 8 in one
scenario and for model 9 in two scenarios. From Table 5 we
see that the average number of feasible solutions found for

models 8 and 9 is ten and eight, respectively.

From Table 5 we also note that model 8§ shows a greater
percentage improvement‘in objective function value from the
first feasible solution to the final solution than model 9.
However, the rate of <convergence for models 8 and 9 is

nearly the same.

Analysis of Satellite Orderings

Appendix D gives the ordering of satellites for each ﬁodel
and each scenario. In this Appendix, (F) refers to the
ordering at the first feasible solution and (B) is the
ordering of satellites at the best solution found. For the
arc allotment models we use the center of the allotted.arc
to determine the order of satellite allotments. For all
the point and arc allotment models considered we see a sig-

nificant change in the orderings from the first feasible
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solution to the best solution. It is also seen that, for
the final solution found, there 1is some similarity in the
ordering at the boundaries. For example, from Table 2] we
see that satellites 4, 5, and ]1 are found close to or at
the boundaries of the arc occupied by the eastern European

satellites. From Table 24 we see that satellites 5,6, and

7 are located close to the boundary of the arc occupied by.

the African satellites. Similar results are found for oth-
er scenarios. Satellites which show this kind of similari-
ty at the boundaries usually have feasible arcs whose east-
ern and/or western edges extend beyond those for other
satellites. Such observations may be useful in developing
heuristic techniques which reduce the number of binary
variables. Satellites with feasible arcs extending beyond
the eastern or western edges of the arcs of other satel-
lites could be fixed in position. As an example, for a
13-satellite problem, if we could fix four satellites in
positions at either end of the ordering} we would reduée
the number of binary variables from 78 to 36. This signifi-
cant reduction in the number of binary variables reduces

the complexity of the problem considerably.




CHAPTER V
APPLYING A HEURISTIC ALGORITHM FOR SATELLITE

SYNTHESIS

The satellite synthesis problem <can be considered to . be
comprised of essentially two problems - a satellite order-
ing problem and a satellite location problem‘ (Mount-
Campbell et al. [15]). For a given ordering of satellites,
the synthesis problem reduces to & linear program. This
linear program can be solved to find the optimal locations
of satellites subject to required minimum satellite separa-
tion and feasibile arc constraints. The determination of

an optimal, or even good, ordering is still difficult.

Gonsalvez [7] has developed a heuristic algorithm that
uses this notion to find solutions to satellite synthesis
problems. 1In the current implementation of this algorithm,
we have the option to minimize either the sum of deviations
of allotted locations from desired locations or the maximum
deviation of an allotted location from the corresponding

desired location [7].

_47_
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The heuristic algorithm is initiated with the specifica-
tion of an initial ordering of satellites. Given this
ordering we solve a linear program to find optimal satel-
lite locations. Next, we generate another ordering by per-
muting ("switching") the order of satellites within a group
of k adjacent satellites. For every promising.switch, the
linear programmiﬁg solution is reoptimized using the prin-
ciples of sensitivity analysis. If a proposed switch does
not yield an improved solution, the switch is reversed. 1If
an improved solution is found, that solution becomes the
incumbent and we look for other promising switches starting
from this improved solution. This procedure 1is tepeatéd
till all orderings that can be obtained by permuting k
adjacent satellites at a time have been considered. When
no promising permutations are identified, k is incremented

by 1 (to a maximum of 5), or the algorithm is terminated.

To guarantee optimality of the solution found with the

{

"switching" heuristic, one would have to examine all n.
orderings, where n is the number of satellites. This is
not practical for large problems. Since the objective is

to minimize the sum of deviations from desired locations or
the maximum deviation from a desired location, we begin
with the initial ordering based on the order of desired
locations and permute small groups of adjacent satellites

to generate different orderings.
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Formally the algorithm for the switching heuristic can

be stated as follows:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Generate an ordering of the satellites based on

their desired locations.

Given the ordering from Step 1, and a particular

objective, solve a linear program to find the opti-

mal locations for the satellites.

Select a particular adjacent-satellite group size,
(2<k<5) .

Permute the order of satellites within this group
(i.e., switch satellites in position 1 to k with
the satellites in positions k+] to n being fixed in
position (not location)).

Reoptimize the linear programming solution as need-

ed.

Repeat till all orderings within a group have been

considered.

Repeat Step 3, switching satellites 2 to k+l, 3 to

k+42,s¢0..,n-k+] to n.

(This step is optional).

Increase group size by 1. Start from Step 3 with

the best solution found so far.

If no improved solution is found, stop.



50

To solve the linear program, the algorithm uses the for-
mulation of model 3 suggested by Mount-Campbell et al.
[15]. It has been found that increasing the group size k
from 2 to 5, in steps of 1, 1is most effective [7]. For
further details on the switching heuristic the reader is

referred to [7].

The switching algorithm can wuse either the worst-case

required satellite separations (A s) or the location-
dependent satellite separations ( A¢) to guarantee inter-
ference requirements are met. If the A9 values are to be

used, then A¢ matrices, calculated for selected satellite
longitudes, must be input. This option cannot be imple-
mented counveniently in a branch-and-bound algorithm. It
represents a distinct advantage of the switching algorithm,
because the smaller location-dependent satellite separa-
tions may make it easier to find feasible solutions to

tightly-constrained problems.

We have used the switching heuristic to find solutions
to some large and medium-size problems, in addition to the
five scenarios introduced 1in Chapter 1IV. In Table 6
results for this algorithm on a 36-satellite scenario are
given. Results obtained from a larger 59-satellite scenar-
io are given in Table 7. Results from a 8l-satellite scen-

ario are given in Table §.
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In Table 9 we present results obtained with the switch-
ing heuristic for the five scenarios used to evaluate the
MIP formulations in the previous chapter. ‘'The objective

function is to minimize the sSum of deviations from desired

locations. We compare these results with the results
obtained for the MIP runs. The CPU time for the switching
runs is the total run time. For the MIP runs, it is the

time to the best solution if an optimal solution was not
found or the total run time if optimality was proved. We
must note that the CPU times are not exactly comparable
since two different computer systems have been used. We do

know that the IBM 3081-D is faster than the IBM 4341.

Table 10 gives results similar to those in Table 9, but
the objective function is to minimize the maximum deviation

from given desired locations.

From Tables 6,7, and 8 we see that the switching heuris-
tic finds feasible solutions very fast. A 36-satellite
scenario, comprised of European and African satellites, was
modelled using formulation 3, the minimization of the total
deviation from desired locations, given in Appendix A. We
ran this model on the IBM 4341 using MIP/370 and found no
feasible solution in 120 minutes of CPU time. On the other
hand, the switching heuristic found a feasible solution to

this same scenario in just 0.4 seconds. The times obtained
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SWITCHING HEURISTIC WITH 36 SATELLITES

OBJECTIVE: MINIMIZE THE TOTAL DEVIATION FROM GIVEN DESIRED

LOCATIONS.

CODE USED: SWITCHING HEURISTIC WITH INCREASING

.'k'l
SCENARIO : EUROPE + AFRICA (36 SATELLITES).
DELTA ‘S’
"TOT DEV.  MAX DEV. ORBITAL CPU TIME
ARC (Sec)
FIRST FEASIBLE 642.49 38.17 100.45° 0.40
SOLN.
FINAL SOLN. 169.29 25.32 72.56 436
DELTA ‘®°
"TOT DEV. MAX DEV.  ORBITAL CPU TIME
ARC (Sec)
FIRST FEASIBLE 642.19 38.17 100.45 1.60
SOLN.
FINAL SOLN. 121.79 14.08 72.00 541
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Table 7

SWITCHING HEURISTIC WITH 59 SATELLITES

OBJECTIVE: MINIMIZE THE TOTAL DEVIATION FROM GIVEN DESIRED
LOCATIONS.

CODE USED: SWITCHING HEURISTIC WITH INCREASING “k’.

SCENARIO : OASTS2Gl (59 SATELLITES).

TOT DEV. MAX DEV. ORBITAL CPU TIME

ARC (Sec)
FIRST FEASIBLE - - - 1200
SOLN.

DELTA_‘®’
TOT DEV. . MAX DEV. ORBITAL CPU TIME

ARC (Sec)
FIRST FEASIBLE 475.55 26.95 94.15 153.8
SOLN.
FINAL SOLN. 443.98 24.564 32.35 1200"

* - TERMINATING DUE TO TIME LIMIT
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SWITCHING HEURISTIC WITH 81 SATELLITES

OBJECTIVE: MINIMIZE THE TOTAL DEVIATION FROM GIVEN DESIRED

LOCATIONS.

CODE USED: SWITCHING HEURISTIC WITH

SCENARIO : OASTS2Gl + CARRIBEAN (81

INCREASING

k.

SATELLITES).

DELTA ‘S’
TOT DEV. MAX DEV. ORBITAL CPU TIME
ARC (Sec)
FIRST FEASIBLE - - - 600*
SOLN.
DELTA ‘9P’
TOT DEV. MAX DEV. ORBITAL CPU TIME
"ARC (Sec)
FIRST FEASIBLE 1033.29 53.53 133.07 354.7
SOLN.
FINAL SOLN. 832.46 47.01 126.55 600*

* - TERMINATING DUE TO TIME LIMIT




55
for the 59-satellite and 8l-satellite scenarios are also

reasonable.

From Tables 9 and 10 we see that the switching heuristic
does better than the MIP formulations in terms of solution
time in nearly all cases. The objective function values
are also comparable. 1In six of the ten rums given in these
two tables, we find that the switching heuristic came ﬁp
with the same solutiom as the MIP solution. In four of
these cases the switching heuristic found an optimal solu-
tion. In the other four computer runs, where we did not
find the same solution with both approaches, the switching
heuristic solution’s value 1is nearly the same as that for
the best solution found by the branch-and-bound algorithm.
The results presented here indicate that the switching heu-
ristic performs exceedingly well, both in terms of solution
time and solution quality. The advantages of this algor-

ithm can be summarized as follows:

(1) The switching heuristic finds feasible solutions very

fast.

(2) The final solution values are nearly as good as those
obtained by truncated runs with a branch-and-bound
algorithm. 1In some cases, the switching heuristic con-

verges to the optimum solution.
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Table 9

SWITCHING HEURISTIC VS. MIP MODEL 3

OBJECTIVE: MINIMIZE THE TOTAL DEVIATION FROM GIVEN DESIRED
LOCATIONS.

CODE USED: SWITCHING HEURISTIC WITH INCREASING ‘k’.

OPTION ¢ DELTA ’S§~

SWITCHING HEUR. MIP FORMULATION
SCENARIO
Obj. Fn. CPU Time Obj. Fn. CPU Time
Value (Sec) Value (Sec)

E. EUROPE (12) 52.74 7.34 49.87 613.0
W. EUROPE (12) 32.29 11.34 29.67% 41 .4
S. AMERICA (13) 30.44 11.35 30.44 86 .4
N. AFRICA (10) 8.65 3.68 8.65" 3.6
S.E. ASIA (10)  23.05 5.31 23.05% 96.0

NOTE: SW runs have been made on the IBM 3081-D.
MIP runs have been made on the IBM 4341.
For SW runs, CPU time = total rumn time
For MIP runs CPU time total run time for optimal
solutions, (or)
= time to best solution
if soln. is not optimal
Figures in parentheses indicate number of satellites.

* - PROVEN OPTIMUM

’
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Table 10

SWITCHING HEURISTIC VS. MIP MODEL &

OBJECTIVE: MINIMIZE THE MAXIMUM DEVIATION FROM GIVEN

DESIRED LOCATIONS.

CODE USED: SWITCHING HEURISTIC WITH INCREASING ‘k’.

OPTION : DELTA ’S’

SWITCHING HEUR. MIP FORMULATION

*

SCENARIO
Obj. Fn. CPU Time Obj. Fn. CPU Time
Value . (Sec) Value (Sec)
E. EUROPE (12) 9.41 8.68 8.48 1137.0
W. EUROPE (12) 6.62 8.35 6.62" 155.4
S. AMERICA (13) 6.96 10.23 6.60 12.6
N. AFRICA (10) 1.64 3.29 1.64" 0.4
S.E. ASIA (10) 5.19 5.10 5.197 79.8
NOTE: SW runs have been made on the IBM 3081-D.

MIP runs have been made on the IBM 4341.
For SW Runs CPU time = total run time
For MIP runmns CPU time = total run time for optimal
solutions
= time to best solution
if soln. is not optimal
Figures in parentheses indicate number of satellites

PROVEN OPTIMUM
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(3) The switching heuristic is independent of the objective

(4)

function. The current implementation 1includes the
option of choosing between two objective functions; the
algorithm can be modified to solve other models also,

including arc allotments [7].

The switching heuristic can make wuse of location-
dependent satellite separations (A¢) values. Thisv
means that it 1is more likely to find a feasible solu-
tions when one exists, especially for tightly-

constrained problems.




CHAPTER VI

RECOMMENDATIONS

Our aims were (1) to analyze different solution techmniques
for solving satellite synthesis problems and (2) to suggest
an appropriate mathematical programming model, and an
accompanying solution strategy, that «can reliabiy solve
synthesis problems at reasonable <cost. In the previous
chapters we have discussed three distinct solution strat-
egies, namely, nonlinear programming search methods,
branch-and-bound, and a switching heuristic, We have also
experimented with different satellite synthesis models. We

have evaluated these strategies and the models.

In Chapter III we see that though it does not guarantee
that C/I needs will be met, Zoutendijk’s method does better
than the gradient search in terms of solution time and
solution quality. The "jamming" effect, which is a poten-
tial problem with the gradient search method, is not
observed when Zoutendijk’s algorithm is used. Results pre-
sented by Reilly et al. 119} indicate that the cyclic
coordinate search method is likely to give worst C/I values

that are better than those obtained with Zoutendijk’s
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method. However, solution times are 1likely to be much
longer. It must be pointed out that even the cyclic coor-
dinate search method, 1like the gradient search and Zouten-
dijk’s method, does not ensure an acceptable solution.
Approaches that guarantee that acceptable solutions will be

found, provided such solutions exist, are more useful.

In Chapter IV we see that by introducing the minimum
satellite separation concept into an MIP model we guarantee
that any solution found will meet our interference require-
ments and hence be acceptable. We have also seen that for
the problems we have considered hére (10-13 satellites) the
first feasible solution is found very fast. However, any
real-life problem would be larger than this. Solution
times for integer programming problems typically increase
exponentially with problem size, An example of this was
mentioned in Chapter V where we said that no solution was

found to a 36-satellite MIP model in two hours of CPU time.

The nonlinear programming methods discussed in Chapter

III, wunlike the branch-and-bound algorithm, do not ensure
that globally optimum solutions will be found. We have
seen that in spite of extensive line searches, none of the

nonlinear programming algorithms converged to even a local
optimum. On the other hand, a few of the MIP models have

homed in on globally optimum solutions. For the smaller
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(7-satellite) problems solved by the nonlinear programming
methods, the time to find the first feasible solution, if
one is fouund, is greater than the time to find the first
feasible solution for the larger (l1(Q to l3-satellite) MIP
models [2]. Also, the MIP models guarantee an acceptable
solution if a feasible solution is found. ‘Clearly, the
mixed integer programming models are preferred over the

nonlinear programming model of Chapter II.

The switching heuristic finds feasible solutions rela-
tively quickly. Solution quality is also nearly as good as
that obtained by truncated branch-and-bound runs. In addi-
tion to this, the switching heuristic makes use of the
smaller, location-dependent satellite separations ( A¢).
It is independent of the objective function and can be mod-
ified to solve models other than the deviation models we

considered in Chapter V.

From the experiments presented in the previous two chap-
ters, it is clear that for small problems the solutions to
models solved by the truncated branch-and-bound method are
as good or slightly better than the solutions to similar
models solved by the switching algorithm. If computer time
is limited, then we recommend that the switching heuristic
be used, For larger problems, the MIP models would require
prohibitive amounts of computing resources. Such problems

are better solved by the switching heuristic.
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Since the nonlinear programming methods and branch-aund-
bound have known computational shortcomings, we conclude
that the heuristic procedure is the best of the methods

considered for solving satellite synthesis problems.

Our other important conclusions come from Chapter IV in°

which we compare mixed integer programming models with dif-
ferent objective functions. In that chapter we show that
the objective of minimizing deviations from desired loca-
tions (models 3,4, and 5) have an edge over the other

objectives because:

(1) Optimal solutions are found with models 3,4, and 5 a

greater number of times than with any other model.

(2) The time to the first feasible solution and the time to
the best solution for models 3,4, and 5 are less than
half of the overall average times for the other point

allotment models.

(3) The solutions to models 3,4, and 5 give good values in
the objective function of model 7 (minimizing the total
arc occupied by the satellites to be allotted 1loca-

tions).

Summarizing, we recommend that for point allotment
problems model 3,4, or 5 be used. Model 5 might not find a
feasible solution for some problems and one must keep this

in mind while deciding between models 3 and 5.
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The two arc allotment models we consider are models 8§
and 9. We have mentioned in Chapter IV that model 8 finds
solutions in which the length of the arc segment allotted
to every administration is the same. On the other hand,
model 9 finds solutions in which the length of the arc seg-
ment allotted ¢to every administration is ﬁroportional to
some criterioh. We also note that the time to the first
feasible solution and the time to the best solution is less
for model 9 than for model 8. Hence, for arc allotment

problems, model 9 seems more practical.



Appendix A

MIXED INTEGER PROGRAMMING MODELS
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NOTATION

We define the following notation for the formulations dis-

cussed in this Appendix:

Parameters.

E.(W.) = Easternmost (westernmost) feasible location for
J satellite j, in degrees west longitude. '

E = Minimum [Ej] over all j (assumed to be zero).
W = Maxinmum [Wj] over all j,

Asi. = Worst-case minimum required separation between
] satellites i and j, in degrees longitude.

M = Large positive constant

' -M ‘ if As..so
8. . = 1]
1] .

Asij if Asij >0

D. = Desired location of satellite j, in degrees west
longitude

= (Wj - Ej)/2 (default)

L. = Constant inversely proportional to the length of the
feasible arc of satellite j (used in model 5).

= 1/(W, - E.).
h] h]
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Pj = Population of country with satellite j.

C. = Constant proportional to the weight assigned to each
J satellite j (used in model 9).

= (Pj)/ § (Pj)

Decision Variables:

x, = Orbital location of satellite j (degrees west of E),
in degrees west longitude.

X, (x. ) = Degrees west (east) of D. that satellite j is
] ] located, in degrees westJ)longitude.

X, = Dummy satellite location corresponding to the eastern-
most satellite location, in degrees west longitude.

X,+] = Dummy satellite location corresponding to the
westernmost satellite location, in degrees west
longitude.

W.(e.) = Western (eastern) edge of the arc segment allotted
33 satellite j, in degrees west longitude.

1 if satellite i is located to the west of
satellite j,.

] 0 otherwise
1 if satellite j is located closer to its west-
ern boundary than to its eastern boundary.
°J 0 otherwise
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1 if the western-edge of satellite i is located
to the west of western-edge of satellite j.

0 otherwise

Minimum gap between adjacent satellites, over all pairs
of adjacent satellites, in degrees longitude.

Maximum deviation of allotted location from given
desired satellite location, over all satellites, in
degrees longitude. '

Maximum deviation of allotted satellite location from
the closest boundary of satellite’s feasible arc, over
all satellites, in degrees longitude.

Length of the minimum arc segment allotted to a sat-
ellite, over all satellites, in degrees longitude.

Length of the minimum weighted arc segment allotted to
a satellite, over all satellites, in degrees longitude.
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Model 2: Maximize the minimum gap between adjacent

satellites.

Maximize z = n (A.1)

sub ject to,

( xi-xj) + [(E-W) -Asij]xij > (E-w) (A.2) ¥i,ji¢j
(—Xi+xj) - [(E-W) --Asi,j]xij Z_Asij (A.3) ¥i,j 3i<j
( x;-x.) + [2(E—W)]xij - n > 2(E-W) (A.4) ¥i,j 9i<j

(-xi+xj) - [2(E-W)]xg35 - @ > 0 (A.5) ¥i,j 3i<j
E; & x5 & Wy (A.6) ¥j

Xg3 = 0 or 1 (A.7) ¥i,j 3i¢]j
X200 _ (A.8) ¥j

n >0 (A.9)

The objective function (A.]1) maximizes the minimum gap
between a pair of adjacent satellites. Constraints (A.2)
and (A.3) are dichotomous constraints which ensure that
minimum satellite separation requirements are enforced.

Constraints (A.4) and (A.5) are also dichotomous
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constraints and they measure the minimum gap between
adjacent satellites for all pairs of satellites i and j.
This minimum gap is denoted by n. Constraint (A.6) ensures
that the allotted location for satellites is feasible. The
integrality of the binary variables is enforced by (A.7).,
The non-negativity of the continuous variablés is enforced

by (A.8) and (A.9).

For a problem with m satellites, this formulation
entails 2m(m-1) structural constraints (A.2), (A.3), (A.4)
and (A.5), m+1l continuous variables and wm(m-1)/2 binary

variables.
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Model 3: Minimize the total deviation of allotted locations
from given desired locations, subject to feasible

arc restrictions [11].
Minimize z = ¥ ( x Y e x.” ) (A.10)
sub ject to,

( xi‘xj) + [(E-W) - As,.]x. > (E-W) (A.11) ¥i,j 9i¢j

X. = x.7 + x. =D ' (A.13) ¥j
j j j j . ]
E. ) . A. j
3 < xy < WJ (A.14) ¥j
xij = 0 or 1 (A.15) ¥i,j 91i<]
xj,xj*,xj' >0 (A.16) ¥j

The objective function (A.10) minimizes £he total deviation
of allotted locations from desirgd locations. Constraints
(A.11) and (A.12) are dichotomous constraints which ensure
that minimum satellite separation requirements  are
enforced. The deviation of the allotted location from the
desired location for each satellite is measured in con-

straint (A.13). Constraint (A.l4) ensures that the




71
allotted location for each satellite is feasible. The inte-
grality of the binary variables is enforced by (A.15). The
non-negativity of the continuous variables is enforced by

(A.16) .

For a problem with m satellites, this formulation

entails m2

structural constraints (A.11), (A.12) and
(A.13), 3m continuous variables and m(m~1)/2 binary vari-

ables.
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Model 4: Minimize the maximum deviation of allotted location
from given desired location, subject to feasible

arc restrictions [20].
Minimize z = p (A.17)

sub ject to,

( xi-xj) + [(E-W) -Asij]xij > (E-W) (A.18) ¥i,j 3i<j

X, - x." +x.” =D (A.20) ¥]
T ] ] ' ]
+ - .
xj + xj -p<£oO (A.21) V¥j
E. . W. . j
;3 < x5 < W (a.22) ¥j
xij = 0 or | (A.23) ¥i,j 9i(]
+ - .
xj,xj ,xj 2 0 (A.Zlo) VJ
P20 (A.25)
The objective function (A.17) minimizes p, the maximum

deviation of an allotted 1location from the corresponding

desired 1location. Constraints (A.18) and (A.19) are
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dichotomous constraints which ensure that minimum satellite
separation requirements are enforced. The deviation of the
allotted location from the corresponding desired location
for each satellites is measured in constraint (A.20). The
maximum deviation of an allotted location from its corre-

sponding desired location is measured by constraint (A.21).

Constraint (A.22) ensures that the allotted 1location for

all satellites is feasible. The 1integrality of the binary
variables is enforced by (A.23). The non-negativity of the

continuous variables is enforced by (A.24) and (A.25).

For a problem with m satellites, this formulation
entails m(m+l) structural constraints (A.18), (A.19),
(A.20) and (A.21), 3m+l continuous variables and m(m-1)/2

binary variables.
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Model 5: Minimize the total weighted deviation of allotted

locations from given desired locations [20].

Minimize z= YL.(x." +x.") (A.26)

P j j

3
subject to,
( xi—xj) + [(E-W‘) —Asij]xij > (E-W) (A.27) ¥i,j 91i<j
(-xi+xj) - [(E-W) - Asij]xij > Asij (A.28) ¥i,j 2i<j
X, - x.7 + x.” =D | (A.29) ¥j
] ] j j . J
Xy5 = 0 or 1 (A.30) ¥i,j 9i<j
xj,xj+,xj' >0 (A.31) ¥j

The objective function (A.26) minimizes the total weighted
deviation of allotted locations from given desired loca-
tions. The weight, Lj’ assigned to each satellite j is the
reciprocal of the length of the feasibie arc of satellite
je By weighing the objective function in this way we give
more weight to administrations with smaller arcs and there-
by attempt to ensure that the solution will be feasible.
Constraints (A.27) and (A.28) are dichotomous constraints
which ensure that minimum satellite separation requirements

are enforced. The deviation of the allotted location from
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the corresponding desired location for each satellite is
measured in constraint (A.29). The integrality of the
binary variables is enforced by (A.30). The non-negativity

of the continuous variables is enforced by (A.31).

For a problem with m satellites, this formulation
entails m? structural constraints (A.27), (A.28) and
(A.29), 3m continuous variables and m(m-1)/2 binary vari-

ables.
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Model 6: Minimize the maximum deviation of allotted loca-

tion from the closest boundary of feasible arc.

Minimize z = q (A.32)

subject to,

Cxg-x) + [(E-W) -As;ilxg. > (E-W)  (A.33) ¥i,j3i¢j
(_xi+xj) ~ ((E-W) - Asij]xij Z.Asij (A.34) ¥i,j dij
(wj - x;) + (W-E)x,: - q ¢ (W-E) (A.35) ¥j

(x, - Ej) - (W-E)x 5 - a9 <0 (A.36) ¥)

Ej < xg &W (A.37) %]

Xi3 = 0 or ) (a.38) ¥i,j i<
xoj = 0 or 1| (A.39) ¥j

X, 20 | (A.40) ¥]

qQ >0 (A.41)

The objective function (A.32) minimizes the maximum devia-

tion of a satellite’s allotted 1location from the closest
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boundary of that satellite’s feasible arc. Constraints
(A.33) and (A.34) are dichotomous constraints which ensure
that minimum satellite separation requirements are
enforced. Constraints (A.35) and (A.36) are also dichoto-
mous or "either-or" constraints. Exactly one of these con-
straints will be redundant. The binary variable X takes
values of 1 or 0, depending on whether satellite j 1is
located closer to its western boundary or eastern boqndary.
If satellite j is located closer to its western boundary
the constraint (A.36) is redundant and (A.35) measures the
deviation from_ the western boundary. 1f xoj=0 then con-
straint (A.36) measures the deviation of satellite j from
the eastern boundary.' The maximum deviation from the clos-
est boundary is denoted by q. Constraint (A.37) ensures
that the allotted location for satellites is feasible. The
integrality of the binary variables is enforced by (A.38)
and (A.39). The non-negativity of the continuous variables

is enforced by (A.40) and (A.41).

For a problem with m satellites, this formulation
entails m(m+l) structural constraints (A 33), (A.34),
(A.35) and (A.36), m+l continuous variables and m(m+l)/2

binary variables.
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Model 7: Minimize the length of the total arc occupied by

the satellites to be allotted locations [20].
Minimize z = X - x (A.42)

sub ject to,

( xi—xj) + [(E-W) —Asij]xij > (E-W) (A.43) ¥i,j 2i<j
(-xi+xj) - [(E-W) "Asij]xij ZfAsij (A.44) ¥i, j i<
Xaelp T X5 20 | (A.45) ¥j
X, - X <0 (A.46) ¥j
Ej < X < wj (A.47) ¥j
X{3 = 0 or 1 (A.48) ¥i,j 2i¢j
xj >0 | A(A.49) ¥j

In this model two dummy variables, xo and x are intro-

n+l1’
duced. These correspond to the easternmost and westernmost
allotted satellite locations, respectively. The objective
function (A.42)  minimizes the total arc occupied by the

allotted satellites, which is equal to the distance between

the easternmost and westernmost satellite locations.
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Constraints (A.43) and (A.aa) are dichotomous constraints
which enforce the minimum satellite separation require-
ments. Constraints (A.45) and (A.46) ensure that the dummy
satellites occupy locations that are separated by at least
the greatest distance between any two satellites. Con-
straint (A.47) ensures that the allotted location for each
satellite is feasible. The integrality of the binary vari-
ables is enforced by (A.48). The non-negativity of the cén-

tinuous variables is enforced by (A.49).

For a problem with m satellites, this formulation
entails m(m+l) structural constraints (A.43), (A.44),
(A.45) and (A.46), m+2 continuous variables and m(m-1)/2

binary variables.
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Model 8: Maximize the length of the minimum arc segment

allotted to any satellite [17].

Maximize z = T (A.50)

sub ject to,

4

(e, - wi) o+ [(E-W) - aij]xij > (E-W) (A.51)
(e, - wy) + [(E-W) - Sij]x;j > 8 (A.52)
Vi-e; -0 (A.53)
®; 2 Ej (A.54)
Vi<W, (A.55)
x;j = 0 or 1 (A.56)
ej’wj >0 : ~ (A.57)
r>o0 (A.58)

The objective function (A.50) maximizes the length of the

shortest arc segment allotted to any satellite.

(A.51) and (A.52) are dichotomous constraints which ensure

minimum satellite separation requirements by enforcing the

¥i,j 91

¥i, j 9i¢j

¥

¥j

¥

vi, j 9i<j]

¥j

Constraints




81
required satellite separation between the western edge of
an allotted arc and the eastern edge of the arc of adjacent
satellites. By replacing Asij by 3
overlap if the minimum required satellite separation is

1j ve permit arcs to

zero. The length of the minimum arc segment allotted to
any satellite 1is measured 1in constraint (A.53), and is
denoted by r.  Constraints (A.54) and (A.55) ensure that

the arc segment allotted to each satellite lies within its
feasible arc. The integrality of the binary variables is
enforced by (A.56). The non-negativity of the continuous

variables is enforced by (A.57) and (A.58).

For a problem with m satellites, this formulation
entails m? structural constraints (A.S51), (A.52) and

(A.53), 2m+]l continuous variables and m(m-1)/2 binary vari-

ables.
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Model 9: Maximize the length of the minimum weighted arc

segment allotted to any satellite [17].
Maximize z = t (A.59)
sub ject to,

(ei - wj) + [(E-W) - bij]xij > (E-W) (A.60) ¥i,j 9i<j

(ej - wy) + [(E-W) - sij]xij > 8ij (A.61) ¥i,j 91i<j
Vi omoep - et 20 | (A.62) ¥j

e > Ej (A.63) ¥]

wj < wj (A.64) V]

x;j =0 or 1 (A.65) ¥i,j 2icj
@wy 20 : "~ (A.66) ¥)

t >0 ‘ (A.67)

The objective function (A.59) maximizes the length of the
shortest weighted arc segment allotted to any satellite.
Constraints (A.60) and (A.6l1) are dichotomous constraints

which ensure minimum satellite separation requirements by
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enforcing the required separation between the western edge
of an allotted arc and the eastern edge of the arc of adja-

cent satellites. By replacing Asij by & we permit arcs

i]
to overlap if the minimum required satellite separation is
zero. The length of the minimum weighted arc segment
allotted to any satellite is measured in constraint (A.62),
and is denoted by t. Constraints (A.63) and (A.64) ensure
that the arc segment allotted to each satellite lies within
its feasible arc. The integrality of the binary variables

is enforced by (A.65). The non-negativity of the continuous

variables is enforced by (A.66) and (A.67).

For a problem with m satellites, this formulation
entails m? structural constraints (A.60), (A.61) and

(A.62), 2m+]l continuous variables and m(m-1)/2 binary vari-

ables.

.



Appendix B

COMPUTER RESULTS OF MIP FORMULATIONS




Table 11

COMPUTER RESULTS OF MIP FORMULATIONS (E. EUROPE)

FIRST FEASIBLE BEST SOLUTION - FINAL SOLN.
SOLUTION

MODEL - -

Obj Fn. Time Obj Fn. Time Time
Value Min Value Min. Min.

1 454 .31 9.33 3.45 20.072

2 7.45 .71 11.27 1.66 20.202

3 77.06 .15 49.87 10.21 20.122

.19 8.48 18.95 20.062

5 69.75 .13 58.21 3.53 20.032

6 14.22 i1 2.71 3.58 20.092

7 32.81 .23 25.48 7.86 20.212

| 8 5.51 .19 8.75 14.49 20.222
' 9 6.43 .17 10.06 C1.46 20.192

NOTE: 1 - Proven Optimum solution
2 - Terminating at the maximum allotted CPU time.,

S TS S S o B U O B A B 9 B D B D B B .
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Table 12

COMPUTER RESULTS OF MIP FORMULATIONS (W. EUROPE)

———

FIRST FEASIBLE BEST SOLUTION FINAL SOLN.
SOLUTION
MODEL _
Obj Fn, Time Obj Fn. Time Time
Value Min. Value Min. Min.
1 4.77 .29 8.38 10.38 20.112
2 8.22 .55 10.36 1.68 20.182
3 61.92 .09 29.67 0.69 5.221
4 7.25 .17 6.62 0.56 2.591
5 46.12 .10 26.69 3.45 7.151
6 12.33 .17 7.51 18.67 20.112
7 33.13 .26 23.71 19.35 20.022
8 5.61 .10 6.00 0.21 0.28!
9 7.79 .21 10.14 19.73 20.062
NOTE: 1 - Proven Optimum solution
2 - Terminating at the maximum allotted CPU time.




Table 13

COMPUTER_RESULTS OF MIP FORMULATIONS (S. AMERICA)
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FIRST FEASIBLE BEST SOLUTION - FINAL SOLN.
SOLUTION
MODEL ' -
Obj Fn. Time Obj Fn. Time Time
Value Min. Value Min. Min.
1 7.77 41 10.55 11.83 20.222
2 11.27 1.05 13.20 15.25 20.152
3 33.55 .13 30.44 1.44 20.022
4 6.96 .19 6.60 0.21 20.022
5 38.02 .10 27.70 1.30 20.04°2
6 41.64 .09 0.86 17.07 20.052
7 28.66 .35 22.50 6.27 20.082
8 7.68 .37 9.85 16.41 20.242
9 9.67 .15 11.99 2.30 20.012
NOTE: 1 - Proven Optimum solution
2 - Terminating at the maximum allotted CPU time.



Table 14

COMPUTER RESULTS OF MIP FORMULATIONS (N. AFRICA)

FIRST FEASIBLE BEST SOLUTION FINAL SOLN.
SOLUTION
MODEL
Obj Fn. Time Obj Fn. Time Time
Value Min Value Min. Min.
1 11.10 .15 16.90 2.11 20.132
2 12.67 .30 18.44 5.36 20.202
3 8.65 .01 8.65 .01 0.06!
4 1.64 .01 1.64 .01 0.07!
5 6.85 .01 6.85 .01 0.051!
6 2.99 .01 0.00 .77 0.81!
7 17.48 .10 16.27 15.47 20.042
8 11.35 .15 14.85 8.36 20.192
9 12.37 .07 14.42 4.27 20.102
NOTE: 1 - Proven Optimum solution
2 - Terminating at the maximum allotted CPU time.




COMPUTER RESULTS OF MIP FORMULATIONS (S.E.

Table 15

89

ASIA)

FIRST FEASIBLE

BEST SOLUTION

FINAL SOLN.

SOLUTION
MODEL : --
Obj Fn. Time Obj Fn. Time Time
Value Min Value Min. Min.
1 9.69 .13 14.69 17.14 20.09°2
2 14.00 .26 16.44 .75 20.202
3 24.11 .02 23.05 .54 1.60!
4 5.88 .05 5.19 .11 1.331
5 26.59 .03 18.31 .14 0.911
6 12.25 .05 0.74 6.05 20.042
7 26.16 .08 18.99 18.88 20.042
8 9.06 11 13.18 693 20.112
9 8.67 .03 8.67 .03 0.09!
NOTE: 1 - Proven Optimum solution
2 - Terminating at the maximum allotted CPU time,



Appendix C

COMPARISON OF SOLUTION QUALITY OF MIP MODELS
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Table 16
COMPARISON OF SOLUTION QUALITY (E. EUROPE)
BEST
SOLN. OBJECTIVE FUNCTION VALUE IN MODEL
TO
MODEL
1 2 3 4 5 6 7
1 9.3 9.3 376.8  62.0 357.7  55.7  124.0
2 6.7 11.3 412.8  62.0 404.9  50.4  124.0
3 0.0 0.6 49.9  10.7 51.2  61.0 28.4
4 0.0 0.5 71.6 8.5 70.2  54.3 27.3
5 0.0 0.3 60.9 14.5 58.2  59.5 32.0
6 0.0 1.3 593.0 61.0 563.1 2.7 124.0
7 0.0 0.4 270.6  38.4 282.3 47.9 25.5
C O
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Table 17
COMPARISON OF SOLUTION QUALITY (W. EUROPE)
BEST
SOLN. OBJECTIVE FUNCTION VALUE IN MODEL
TO i
MODEL
1 2 3 4 5 6 7
1 8.4 9.3 349.5 59.0  365.4 55.5  114.0
2 8.0 10.4 366.6 59.0 358.3 50.5 114.0
3 0.0 1.3 29.7 11.8 26.6 61.4 34.8
4 0.0 1.8 53.4 6.6 96.7 61.4 35.3
5 0.0 1.3 29.7 11.8 26.6 61.4 34.8
6 0.0 1.3 575.9 62.0 568.0 7.5  120.0
7 0.0 0.9 230.6 35.3  256.1 53.1 23.7
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Table 18
COMPARISON OF SOLUTION QUALITY (S. AMERICA)
BEST -
SOLN. OBJECTIVE FUNCTION VALUE IN MODEL
TO
MODEL
1 2 3 4 5 6 7
1 10.6 10.6 496.0 68.0  407.3 6l.4 152.0
2 8.1 13.2 530.4 68.0 436.5 55.6 160.0
3 0.0 0.6 30.4 11.4 28.4 68.0 35.0
4 0.0 0.2 55.3 6.6 46.3 66.8 22.5
5 0.0 0.3 30.4 10.0 27.7 67.3 33.8
6 0.0 0.5 774.7 68.0 647 .2 0.9 160.0
7 0.0 0.0 556.4 57.6  468.7 29.0 22.5




Table 19

COMPARISON OF SOLUTION QUALITY (N. AFRICA)
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BEST

SOLN. OBJECTIVE FUNCTION VALUE IN MODEL

TO

MODEL

1 2 3 4 5 6 7

1 16.9 17.4 400.7 64.0 323.5 57.8 166.0
2 18.4 13.4 431.1 63.0 350.8 45.8 166.0
3 0.0 2.0 8.7 3.3 7.1 64.3 43.0
4 0.0 0.7 13.0 1.6 10.4 63.4 44 .3
5 0.0 2.0 8.7 3.3 6.9 64.0 46.3
6 2.9 6 0 616.0 65.0 500.0 0.0 166.0
7 0.0 0.9 363.4 60.0 295.3 48.8 16.3
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Table 20

COMPARISON OF SOLUTION QUALITY (S.E. ASIA)

BEST .

SOLN. OBJECTIVE FUNCTION VALUE IN MODEL

TO ‘ L

MODEL , -

1 2 3 4 5 6 7

1 14.7 15.3 386.9 64.0 316.3 47.1  148.0
2 12.2 16.4 391.1 64.0  314.5 49.8 148.0
3 0.0 1.4 23.0 7.1 18.4 66.7 27.6
4 0.0 0.4 40.0 5.2 34.6 62.8 32.2
5 0.0 1.4 23.1 9.8 18.3 66.8 27.8
6 0.4 1.4 588.7 67.0  498.9 0.7 144.0

7 0.0 0.0 319.9 47.8 279.8 37.9 19.0




Appendix D

ORDERING OF SATELLITE ALLOTMENTS IN MIP MODELS
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Table 21

CHANGE IN THE ORDERING OF SATELLITES (E. EUROPE)

1(F)

1(B)

2(F)

2(B)

3(F)

3(B)

4(F)

4(B)

5(F)

5(B)

6(F)

6(B)

7(F)

7(B)

8(F)

8(B)

9(F)

9(B)

10

12

11

11

10

10

10

12

8

10

11

10

10

10

11

11

10

12

11

10

11

10

10

12

12

10

12

10

11

12

11
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12

11



0BJ

0BJ

OBJ

0BJ

0BJ

0BJ

0BJ

0BJ

0BJ

O0BJ

OBJ

0BJ

0BJ

0BJ

OBJ

OBJ

OBJ

OBJ

Table 22
CHANGE IN THE ORDERING OF SATELLITES (W. EUROPE)
1(F) 3 2 8 9 10 11 12 7 4 S 6
1(B) 1 9 12 4 11 6 8 2 7 10 3
2(F) 5 3 2 9 I1 12 8 10 6 7 4
2(B) 1 9 7 4 11 12 8 2 10 6 3
3(F) 2 3 1 9 4 6 7 5 10 11 12
3(B) 11 12 7 10 9 8 6 5 3 1 4
4(F) 2 3 1 4 5 6 10 7 8§ 12 9
4(B) 11 9 12 8 7 10 4 6 5 3 1
5(F) 2 1 3 5 6 7 8 4 10 11 12
5(B) 11 12 7 10 9 8 6 5 3 1 4
6(F) 5 1 4 7 6 11 12 9 2 3 8
6(B) 7 1 4 3 2 9 11 10 8 12 6
7(F) 3 5 6 10 12 7 8 9 11 4 2
7(B) 4 8 12 9 1 3 11 5 2 6 10
8(F) 4 1 6 7 2 5 12 3 10 8§ 11
8(B) 7 4 11 1 2 9 6 3 5 12 8
9(F) 4 5 3 7 2 8 12 11 9 10 6
9(B) 5 4 11 6 2 7 12 3 1 8 9

98

10

10
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Table 23

CHANGE IN THE ORDERING OF SATELLITES (S. AMERICA)

OBJ 1(F) 2 13 9 5 4 12 7 3 10 11 1 8 6

OBJ 1(B) 9 7 4 13 1 5 11 12 8 6 3 2 10
OBJ 2(F) 2 3 13 4 12 5 11 8 1 9 7 10 6
OBJ 2(B) 6 9 1 8 4 1 13 2 3 5 12 11 10
OBJ 3(F) 3 13 10 11 8 7 2 12 1 5 4 9 6

OBJ 3(B) 6 9 1 5 4 12 2 7 8 11 10 13 3

OBJ 4(F) 3 13 10 8 7 11 2 12 1 5 4 9 6

0BJ 4(B) 6 9 4 5 1 12 2 7 11 13 8 10 3

oBJ 5(F) 3 11 13 10 8 7 2 1 5 4 12 9 6

0BJ 5(B) 6 9 1 12 4 5 2 7 8 11 10 13 3

OBJ 6(F) 10 11 2 8 3 13 9 6 12 5 4 7 1
OBJ 6(B) 6 2 5 7 1 13 12 4 9 3 8 11 10
OBJ 7(F) 3 12 11 13 10 9 8 7 4 6 2 5 1
OBJ 7(B)»13 1 9 12 8 6 11 7 2 5 10 4 3

OBJ 8(F) 2 5 4 6 11 7 9 10 12 13 3 8 1

OBJ 8(B) 10 2 11 12 8 6 13 3 1 5 4 7 9

0BJ 9(F) 7 11 10 8 3 6 1 5 13 12 2 4 9

OBJ 9(B) 7 8 10 11 3 13 4 12 1 5 2 9 6
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Table 24

CHANGE IN THE ORDERING OF SATELLITES (N. AFRICA)

OBJ 1(F) 10 5 1 4 6 3 8 7 9 2
OBJ 1(B) 5 2 4 1 3 7 10 8 9 6
OBJ 2(F) 10 5 4 1 6 7 8 9 3 2
0BJ 2(B) 5 3 1 9 8 4 10 2 7 6
O0BJ 3(F) 6 7 8 1 9 2 10 3 4 5
OBJ 3(B) 5 4 3 10 2 9 1 8 7 6
OBJ 4(F) 6 7 8 1 9 2 10 3 4 5
OBJ 4(B) 5 4 3 10 9 2 1 8 7 6
0BJ 5(F) 6 7 8 1 9 2 1o 3 4 5
0BJ 5(B) 5 4 3 10 2 9 1 8 7 6
OBJ 6(F) 6 7 8 1 9 2 10 3 5 4
OBJ 6(B) 5 3 9 8 7 4 10 2 1 6
0BJ 7(F) 2 4 7 8 9 5. 10 6 3 1
OBJ 7(B) 1 5 7 10 8 3 9 6 4 2
0OBJ 8(F) 1 3 5 6 10 7 4 8 9 2
OBJ 8(B) 7 9 8 10 6 3 1 4 2 5
0OBJ 9(F) 7 2 8 10 6 9 4 1 5 3

0BJ 9(B) 7 2 6 10 1 3 8 9 4 )
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OBJ
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0BJ

CHANGE IN THE ORDERING OF SATELLITES (S.E. ASIA)

Table 25

1(F)

1(B)

2(F)

2(B)

3(F)

3(B)

4(F)

4(B)

5(F)

5(B)

6(F)

6(B)

7(F)

7(B)

8(F)

8(B)

9(F)

9(B)

10

10

10

10

4 7
6 3
8 10
6 7
4 7
5 8
2 4
6 5
4 7
5 8
7 6
1 8
9 8
8 5
4 10
7 8
3 4
3 4

10

10

10

10

10
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10

10

10

10
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